Contents - Preface
- Table Of Contents
- Table Of Contents
- Table Of Contents
- Table Of Contents
- Table Of Contents
- Table Of Contents
- Fundamental safety instructions
- Fundamental Geometrical Principles
- Polar coordinates
- Absolute dimensions
- Incremental dimension
- Working planes
- Zero points and reference points
- Tool change
- Coordinate systems
- Basic coordinate system (BCS)
- Coordinate transformations
- Tables
- Workpiece coordinate system (WCS)
- What is the relationship between the various coordinate systems
- Fundamental Principles of NC Programming
- Structure and contents of an NC program
- Block rules
- Value assignments
- Skipping blocks
- Creating an NC program
- Available characters
- Spindle motion
- Program examples
- Example 2: NC program for turning
- Example 3: NC program for milling
- Tool change with M6
- Tool change with tool management (option)
- Tool change with T command with active tool management (option)
- Tool change with M6 with active tool management (option)
- Behavior with faulty T programming
- Tool offsets
- Tool radius compensation
- Tool compensation memory
- Tool types
- Drills
- Grinding tools
- Turning tools
- Special tools
- Chaining rule
- Change in the tool offset data
- Programmable tool offset (TOFFL, TOFF, TOFFR)
- Cutting rate (SVC)
- Constant cutting rate (G96/G961/G962, G97/G971/G972, G973, LIMS, SCC)
- Constant grinding wheel peripheral speed (GWPSON, GWPSOF)
- Programmable spindle speed limitation (G25, G26)
- Feed control
- Traverse positioning axes (POS, POSA, POSP, FA, WAITP, WAITMC)
- Position-controlled spindle mode (SPCON, SPCOF)
- Positioning spindles (SPOS, SPOSA, M19, M70, WAITS)
- Feedrate for positioning axes / spindles (FA, FPR, FPRAON, FPRAOF)
- Programmable feedrate override (OVR, OVRRAP, OVRA)
- Programmable acceleration override (ACC) (option)
- Feedrate with handwheel override (FD, FDA)
- Feedrate optimization for curved path sections (CFTCP, CFC, CFIN)
- Several feedrate values in one block (F, ST, SR, FMA, STA, SRA)
- Non-modal feedrate (FB)
- Tooth feedrate (G95 FZ)
- Settable zero offset (G54 to G57, G505 to G599, G53, G500, SUPA, G153)
- Selection of the working plane (G17/G18/G19)
- Dimensions
- Absolute dimensions (G90, AC)
- Incremental dimensions (G91, IC)
- Absolute and incremental dimensions for turning and milling (G90/G91)
- Absolute dimensions for rotary axes (DC, ACP, ACN)
- Inch or metric dimensions (G70/G700, G71/G710)
- Channel-specific diameter/radius programming (DIAMON, DIAM90, DIAMOF DIAMCYCOF)
- Axis-specific diameter/radius programming (DIAMONA, DIAM90A, DIAMOFA DIACYCOFA, DIAMCHANA, DIAMCHAN, DAC, DIC, RAC, RIC)
- Position of workpiece for turning
- General information about the travel commands
- Travel commands with Cartesian coordinates (G0, G1, G2, G3, X..., Y
- Travel commands with polar coordinates
- Travel commands with polar coordinates (G0, G1, G2, G3, AP, RP)
- Rapid traverse motion (G0, RTLION, RTLIOF)
- Linear interpolation (G1)
- Circular interpolation
- Circular interpolation with center point and end point (G2/G3, X... Y... Z..., I... J... K...)
- Circular interpolation with radius and end point (G2/G3, X... Y... Z
- Circular interpolation with opening angle and center point (G2/G3, X... Y... Z.../ I... J K
- Circular interpolation with polar coordinates (G2/G3, AP, RP)
- Circular interpolation with tangential transition (CT, X... Y
- Helical interpolation (G2/G3, TURN)
- Involute interpolation (INVCW, INVCCW)
- Contour definitions
- Contour definitions: One straight line
- Contour definitions: Two straight lines
- Contour definitions: Three straight lines
- Contour definitions: End point programming with angle
- Thread cutting
- Programmed run-in and run-out path (DITS, DITE)
- Thread cutting with increasing or decreasing lead (G34, G35)
- Fast retraction during thread cutting (LFON, LFOF, DILF, ALF, LFTXT, LFWP, LFPOS POLF, POLFMASK, POLFMLIN)
- Convex thread (G335, G336)
- Tapping
- Tapping with compensating chuck (G63)
- Chamfer, rounding (CHF, CHR, RND, RNDM, FRC, FRCM)
- Tool radius compensation (G40, G41, G42, OFFN)
- Approaching and leaving contour (NORM, KONT, KONTC, KONTT)
- Compensation at the outside corners (G450, G451, DISC)
- Smooth approach and retraction
- Approach and retraction with extended retraction strategies (G460, G461, G462)
- Collision detection (CDON, CDOF, CDOF2)
- D tool compensation (CUT2D, CUT2DF)
- Keep tool radius compensation constant (CUTCONON, CUTCONOF)
- Tools with a relevant cutting edge position
- Exact stop (G60, G9, G601, G602, G603)
- Continuous-path mode (G64, G641, G642, G643, G644, G645, ADIS, ADISPOS)
- Frames
- Frame instructions
- Programmable zero offset
- Axial zero offset (G58, G59)
- Programmable rotation (ROT, AROT, RPL)
- Programmable frame rotations with solid angles (ROTS, AROTS, CROTS)
- Programmable scaling factor (SCALE, ASCALE)
- Programmable mirroring (MIRROR, AMIRROR)
- Frame generation according to tool orientation (TOFRAME, TOROT, PAROT)
- Deselect frame (G53, G153, SUPA, G500)
- Deselecting overlaid movements (DRFOF, CORROF)
- Auxiliary function outputs
- M functions
- Supplementary commands
- Writing string in OPI variable (WRTPR)
- Working area limitation
- Working area limitation in WCS/SZS (WALCS0 ... WALCS10)
- Reference point approach (G74)
- Approaching a fixed point (G75)
- Travel to fixed stop (FXS, FXST, FXSW)
- Dwell time (G4)
- Internal preprocessing stop
- Other information
- Special axes
- Channel axes
- Synchronized axes
- Command axes
- Lead link axes
- From travel command to machine movement
- Addresses
- Names
- Constants
- Operations: Availability for SINUMERIK 828D
- Fixed addresses
- Settable addresses
- G commands
- Predefined procedures
- Predefined procedures in synchronized actions
- Predefined functions
- Currently set language in the HMI
- A.1 List of abbreviations
- A.2 Documentation overview
- Glossary
- Index
|
The setting data can be programmed in the NC program; this means that it can be specifieddifferently for each block transition. Very different specifications for the contour tolerance andthe tolerance of the tool orientation can only take effect with G643.NoteExpansion to include contour and orientation tolerance is only supported on systems featuringthe "Polynomial interpolation" option.NoteAn orientation transformation must be active for smoothing within the orientation tolerance.Corner rounding with greatest possible dynamic response in G644Smoothing with maximum possible dynamic response is configured in the thousands placewith MD20480 $MC_SMOOTHING_MODE.Value Meaning0 Specification of maximum axial deviations with:MD33100 $MA_COMPRESS_POS_TOL1 Specification of maximum rounding clearance by programming:ADIS=... or ADISPOS=...2 Specification of the maximum possible frequencies of each axis occurring in the rounding areawith:MD32440 $MA_LOOKAH_FREQUENCYThe rounding area is defined such that no frequencies in excess of the specified maximumcan occur while the rounding motion is in progress.3 When rounding with G644, neither the tolerance nor the rounding distance are monitored.Each axis traverses around a corner with the maximum possible dynamic response.With SOFT, both the maximum acceleration and the maximum jerk of each axis is maintained.With the BRISK command, the jerk is not limited; instead, each axis travels at the maximumpossible acceleration.Smoothing of tangential block transitions with G645With G645, the smoothing motion is defined so that the acceleration of all axes involvedremains smooth (no jumps) and the parameterized maximum deviations from the originalcontour (MD33120 $MA_PATH_TRANS_POS_TOL) are not exceeded.In the case of angular non-tangential block transitions, the smoothing behavior is the same aswith G642.Path action12.2 Continuous-path mode (G64, G641, G642, G643, G644, G645, ADIS, ADISPOS)Fundamentals302 Programming Manual, 01/2015, 6FC5398-1BP40-5BA2 PreviousNext |